17. Increasing and Decreasing Functions

Exercise 17.1

1. Question

Prove that the function $f(x) = \log_e x$ is increasing on $(0, \infty)$.

Answer

let $x_1, x_2 \in (0, \infty)$

We have, $x_1 < x_2$

 $\Rightarrow \log_e x_1 < \log_e x_2$

 $\Rightarrow f(x_1) < f(x_2)$

So, f(x) is increasing in $(0,\infty)$

2. Question

Prove that the function $f(x) = \log_a x$ is increasing on $(0, \infty)$ if a > 1 and decresing on $(0, \infty)$, if 0 < a < 1.

Answer

case l

When a > 1

let $x_1, x_2 \in (0, \infty)$

We have, $x_1 < x_2$

 $\Rightarrow \log_e x_1 < \log_e x_2$

 $\Rightarrow f(x_1) < f(x_2)$

So, f(x) is increasing in $(0,\infty)$

case II

When 0 < a < 1

 $f(x) = \log_a x = \frac{\log x}{\log a}$

```
when a < 1 \Rightarrow \log a < 0
```

```
let x_1 < x_2
```

 $\Rightarrow \log x_1 < \log x_2$

$$\Rightarrow \frac{\log x_1}{\log a} > \frac{\log x_2}{\log a} [\because \log a < 0]$$

$$\Rightarrow f(x_1) > f(x_2)$$

So, f(x) is decreasing in $(0,\infty)$

3. Question

Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

Answer

we have,

f(x) = ax + b, a > 0

let $x_1, x_2 \in \mathbb{R}$ and $x_1 > x_2$ $\Rightarrow ax_1 > ax_2$ for some a > 0

 \Rightarrow ax₁ + b> ax₂ + b for some b

 $\Rightarrow f(x_1) > f(x_2)$

Hence, $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$

So, f(x) is increasing function of R

4. Question

Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R.

Answer

we have,

f(x) = ax + b, a < 0let $x_1, x_2 \in R$ and $x_1 > x_2$ $\Rightarrow ax_1 < ax_2$ for some a > 0 $\Rightarrow ax_1 + b < ax_2 + b$ for some b $\Rightarrow f(x_1) < f(x_2)$

Hence, $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$

So, f(x) is decreasing function of R

5. Question

Show that $f(x) = \frac{1}{x}$ is a decreasing function on $(0, \infty)$.

Answer

we have

$$f(x) = \frac{1}{x}$$

let $x_1, x_2 \in (0,\infty)$ We have, $x_1 > x_2$

$$\Rightarrow \frac{1}{x_1} < \frac{1}{x_2}$$

 $\Rightarrow f(x_1) < f(x_2)$

Hence, $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$

So, f(x) is decreasing function

6. Question

Show that $f(x) = \frac{1}{1+x^2}$ decreases in the interval [0, ∞) and increases in the interval (- ∞ , 0].

Answer

We have,

$$f(x) = \frac{1}{1+x^2}$$

Case 1

When $x \in [0, \infty)$ Let $x_1, x_2 \in (0, \infty]$ and $x_1 > x_2$ $\Rightarrow x_1^2 > x_2^2$ $\Rightarrow 1 + x_1^2 > 1 + x_2^2$ $\Rightarrow \frac{1}{1 + x_1^2} < \frac{1}{1 + x_2^2}$ $\Rightarrow f(x_1) < f(x_2)$ $\therefore f(x)$ is decreasing on $[0, \infty)$. Case 2 When $x \in (-\infty, 0]$ Let $x_1 > x_2$ $\Rightarrow x_1^2 < x_2^2$ $\Rightarrow 1 + x_1^2 < 1 + x_2^2$ $\Rightarrow \frac{1}{1 + x_1^2} > \frac{1}{1 + x_2^2}$ $\Rightarrow f(x_1) > f(x_2)$ $\therefore f(x)$ is increasing on $(-\infty, 0]$.

Thus, f(x) is neither increasing nor decreasing on R.

7. Question

Show that $f\left(x\right)\!=\!\frac{1}{1\!+\!x^2}$ is neither increasing nor decreasing on R.

Answer

We have,

$$f(x) = \frac{1}{1+x^2}$$

Case 1

When x_€ [0, ∞)

Let
$$x_1 > x_2$$

 $\Rightarrow x_1^2 > x_2^2$
 $\Rightarrow 1 + x_1^2 > 1 + x_2^2$
 $\Rightarrow \frac{1}{1 + x_1^2} < \frac{1}{1 + x_2^2}$
 $\Rightarrow f(x_1) < f(x_2)$
 $\Rightarrow \therefore f(x) \text{ is decreasing on}[0, \infty).$
Case 2
When $x \in (-\infty, 0]$

Let
$$x_1 > x_2$$

$$\Rightarrow x_1^2 < x_2^2$$

$$\Rightarrow 1 + x_1^2 < 1 + x_2^2$$

$$\Rightarrow \frac{1}{1 + x_1^2} > \frac{1}{1 + x_2^2}$$

$$\Rightarrow f(x_1) > f(x_2)$$

∴ f(x) is increasing on(-∞,0].

Thus, f(x) is neither increasing nor decreasing on R.

8. Question

Without using the derivative, show that the function f(x) = |x| is

A. strictly increasing in (0, ∞)

B. strictly decreasing in $(-\infty, 0)$.

Answer

We have,

 $f(x) = |x| = \{x, x > 0\}$

(a)Let $_{X_{1}},$ $_{X_{2}}\in$ (0, ∞) and $_{X_{1}}>$ $_{X_{2}}$

$$\Rightarrow f(x_1) > f(x_2)$$

So, f(x) is increasing in $(0, \infty)$

(b) Let $\underline{x_1}, \underline{x_2} \in$ (- ∞ , 0)and $\underline{x_1} > \underline{x_2}$

$$\Rightarrow -x_1 < -x_2$$

$$\Rightarrow$$
 f(x₁) > f(x₂)

f(x) is strictly decreasing on(- ∞ , 0).

9. Question

Without using the derivative show that the function f(x) = 7x - 3 is strictly increasing function on R.

Answer

Given,

$$f(x) = 7x - 3$$

Lets $\underline{x}_1, \underline{x}_2 \in \mathsf{R}$ and $\underline{x}_1 > \underline{x}_2$

$$\Rightarrow 7_{X_1} > 7_{X_2}$$

 $\Rightarrow 7_{X_1} - 3 > 7_{X_2} - 3$

$$\Rightarrow$$
 f(x₁) > f(x₂)

f(x) is strictly increasing on R.

Exercise 17.2

1 A. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 10 - 6x - 2x^2$

Answer

Given:- Function $f(x) = 10 - 6x - 2x^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a, b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing. Here we have,

$$f(x) = 10 - 6x - 2x^{2}$$

⇒ $f'(x) = \frac{d}{dx}(10 - 6x - 2x^{2})$
⇒ $f'(x) = -6 - 4x$

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow -6 -4x > 0$$

$$\Rightarrow -4x > 6$$

$$\Rightarrow x < -\frac{6}{4}$$

$$\Rightarrow x < -\frac{3}{2}$$

$$\Rightarrow x \in (-\infty, -\frac{3}{2})$$

Thus f(x) is increasing on the interval $\left(-\infty, -\frac{3}{2}\right)$

Again, For f(x) to be increasing, we must have

f'(x) < 0 $\Rightarrow -6 - 4x < 0$ $\Rightarrow -4x < 6$ $\Rightarrow x > -\frac{6}{4}$ $\Rightarrow x > -\frac{3}{2}$ $\Rightarrow x \in \left(-\frac{3}{2}, \infty\right)$

Thus f(x) is decreasing on interval $x \in \left(-\frac{3}{2}, \infty\right)$

1 B. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = x^2 + 2x - 5$

Answer

Given:- Function $f(x) = x^2 + 2x - 5$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing. Here we have,

$$f(x) = x^{2} + 2x - 5$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^{2} + 2x - 5)$$

$$\Rightarrow f'(x) = 2x + 2$$
For f(x) to be increasing, we must have
$$\Rightarrow f'(x) > 0$$

$$\Rightarrow 2x + 2 > 0$$

$$\Rightarrow 2x < -2$$

$$\Rightarrow x < -2$$

$$\Rightarrow x < -1$$

$$\Rightarrow x \in (-\infty, -1)$$
Thus f(x) is increasing on interval (-∞, -1)
Again, For f(x) to be increasing, we must have
$$f'(x) < 0$$

$$\Rightarrow 2x + 2 < 0$$

$$\Rightarrow 2x > -2$$

$$\Rightarrow x > -2$$

$$\Rightarrow x > -2$$

$$\Rightarrow x > -1$$

$$\Rightarrow x \in (-1, \infty)$$
Thus f(x) is decreasing on interval x ∈ (-1, ∞)

1 C. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 6 - 9x - x^2$

Answer

Given:- Function $f(x) = 6 - 9x - x^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 6 - 9x - x^{2}$$

$$\Rightarrow f'(x) = \frac{d}{dx}(6 - 9x - x^{2})$$

$$\Rightarrow$$
 f'(x) = -9 - 2x

For f(x) to be increasing, we must have

 $\Rightarrow f'(x) > 0$ $\Rightarrow -9 - 2x > 0$ $\Rightarrow -2x > 9$ $\Rightarrow x < -\frac{9}{2}$ $\Rightarrow x < -\frac{9}{2}$ $\Rightarrow x < (-\infty, -\frac{9}{2})$

Thus f(x) is increasing on interval $\left(-\infty, -\frac{9}{2}\right)$

Again, For f(x) to be decreasing, we must have

f'(x) < 0 $\Rightarrow -9 - 2x < 0$ $\Rightarrow -2x < 9$ $\Rightarrow x > -\frac{9}{2}$ $\Rightarrow x > -\frac{9}{2}$ $\Rightarrow x \in (-\frac{9}{2}, \infty)$

Thus f(x) is decreasing on interval $x \in (-\frac{9}{2}, \infty)$

1 D. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 2x^3 - 12x^2 + 18x + 15$

Answer

Given:- Function $f(x) = 2x^3 - 12x^2 + 18x + 15$

Theorem:- Let f be a differentiable real function defined on an open interval (a, b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

```
(i) Obtain the function and put it equal to f(x)
```

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

```
f(x) = 2x^3 - 12x^2 + 18x + 15

⇒ f(x) = \frac{d}{dx}(2x^3 - 12x^2 + 18x + 15)

⇒ f'(x) = 6x^2 - 24x + 18

For f(x) lets find critical point, we must have

⇒ f'(x) = 0

⇒ 6x^2 - 24x + 18 = 0

⇒ 6(x^2 - 4x + 3) = 0

⇒ 6(x^2 - 3x - x + 3) = 0

⇒ 6(x - 3)(x - 1) = 0

⇒ (x - 3)(x - 1) = 0

⇒ x = 3, 1

clearly, f'(x) > 0 if x < 1 and x > 3

and f'(x) < 0 if 1< x < 3

Thus, f(x) increases on (-∞,1) ∪ (3, ∞)
```

and f(x) is decreasing on interval $x \in (1,3)$

1 E. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 5 + 36x + 3x^2 - 2x^3$

Answer

Given:- Function $f(x) = 5 + 36x + 3x^2 - 2x^3$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

 $f(x) = 5 + 36x + 3x^2 - 2x^3$

⇒ $f'(x) = \frac{d}{dx}(5 + 36x + 3x^2 - 2x^3)$ ⇒ $f'(x) = 36 + 6x - 6x^2$ For f(x) lets find critical point, we must have ⇒ f'(x) = 0⇒ $36 + 6x - 6x^2 = 0$ ⇒ $6(-x^2 + x + 6) = 0$ ⇒ $6(-x^2 + 3x - 2x + 6) = 0$ ⇒ $-x^2 + 3x - 2x + 6 = 0$ ⇒ $x^2 - 3x + 2x - 6 = 0$ ⇒ (x - 3)(x + 2) = 0⇒ x = 3, -2clearly, f'(x) > 0 if -2 < x < 3and f'(x) < 0 if x < -2 and x > 3Thus, f(x) increases on $x \in (-2,3)$ and f(x) is decreasing on interval $(-\infty, -2) \cup (3, \infty)$

1 F. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 8 + 36x + 3x^2 - 2x^3$

Answer

Given:- Function $f(x) = 8 + 36x + 3x^2 - 2x^3$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

 $f(x) = 8 + 36x + 3x^{2} - 2x^{3}$ $\Rightarrow f'(x) = \frac{d}{dx}(8 + 36x + 3x^{2} - 2x^{3})$ $\Rightarrow f'(x) = 36 + 6x - 6x^{2}$ For f(x) lets find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 36 + 6x - 6x^{2} = 0$

⇒ $6(-x^2 + x + 6) = 0$ ⇒ $6(-x^2 + 3x - 2x + 6) = 0$ ⇒ $-x^2 + 3x - 2x + 6 = 0$ ⇒ $x^2 - 3x + 2x - 6 = 0$ ⇒ (x - 3)(x + 2) = 0⇒ x = 3, -2clearly, f'(x) > 0 if -2 < x < 3and f'(x) < 0 if x < -2 and x > 3Thus, f(x) increases on $x \in (-2,3)$ and f(x) is decreasing on interval $(-\infty, -2) \cup (3, \infty)$

1 G. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 5x^3 - 15x^2 - 120x + 3$

Answer

Given:- Function $f(x) = 5x^3 - 15x^2 - 120x + 3$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

CLICK HERE

🕀 www.studentbro.in

$$f(x) = 5x^{3} - 15x^{2} - 120x + 3$$

$$\Rightarrow f'(x) = \frac{d}{dx}(5x^{3} - 15x^{2} - 120x + 3)$$

$$\Rightarrow f'(x) = 15x^{2} - 30x - 120$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 15x^{2} - 30x - 120 = 0$$

$$\Rightarrow 15(x^{2} - 2x - 8) = 0$$

$$\Rightarrow 15(x^{2} - 4x + 2x - 8) = 0$$

$$\Rightarrow x^{2} - 4x + 2x - 8 = 0$$

$$\Rightarrow (x - 4)(x + 2) = 0$$

$$\Rightarrow x = 4, -2$$

clearly, f'(x) > 0 if x < -2 and x > 4

and f'(x) < 0 if -2 < x < 4

Thus, f(x) increases on $(-\infty, -2) \cup (4, \infty)$

and f(x) is decreasing on interval $x \in (-2,4)$

1 H. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = x^3 - 6x^2 - 36x + 2$

Answer

Given:- Function $f(x) = x^3 - 6x^2 - 36x + 2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

f(x) =
$$x^3 - 6x^2 - 36x + 2$$

⇒ f(x) = $\frac{d}{dx}(x^3 - 6x^2 - 36x + 2)$
⇒ f'(x) = $3x^2 - 12x - 36$
For f(x) lets find critical point, we must have
⇒ f'(x) = 0
⇒ $3x^2 - 12x - 36 = 0$
⇒ $3(x^2 - 4x - 12) = 0$
⇒ $3(x^2 - 6x + 2x - 12) = 0$
⇒ $x^2 - 6x + 2x - 12 = 0$
⇒ $x^2 - 6x + 2x - 12 = 0$
⇒ $x = 6, -2$
clearly, f'(x) > 0 if x < -2 and x > 6
and f'(x) < 0 if $-2 < x < 6$
Thus, f(x) increases on $(-\infty, -2) \cup (6, \infty)$
and f(x) is decreasing on interval $x \in (-2, 6)$
1 I. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 2x^3 - 15x^2 + 36x + 1$

Answer

Given:- Function $f(x) = 2x^3 - 15x^2 + 36x + 1$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = 2x^{3} - 15x^{2} + 36x + 1$$

⇒ $f'(x) = \frac{d}{dx}(2x^{3} - 15x^{2} + 36x + 1)$
⇒ $f'(x) = 6x^{2} - 30x + 36$
For $f(x)$ lets find critical point, we must have
⇒ $f'(x) = 0$
⇒ $6x^{2} - 30x + 36 = 0$
⇒ $6(x^{2} - 5x + 6) = 0$
⇒ $3(x^{2} - 3x - 2x + 6) = 0$
⇒ $x^{2} - 3x - 2x + 6 = 0$
⇒ $(x - 3)(x - 2) = 0$
⇒ $x = 3, 2$
clearly, $f'(x) > 0$ if $x < 2$ and $x > 3$
and $f'(x) < 0$ if $2 < x < 3$
Thus, $f(x)$ increases on $(-\infty, 2) \cup (3, \infty)$
and $f(x)$ is decreasing on interval $x \in (2,3)$

1 J. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 2x^3 + 9x^2 + 12x + 20$

Answer

Given:- Function $f(x) = 2x^3 + 9x^2 + 12x + 20$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

 $f(x) = 2x^{3} + 9x^{2} + 12x + 20$ $\Rightarrow f'(x) = \frac{d}{dx}(2x^{3} + 9x^{2} + 12x + 20)$ $\Rightarrow f'(x) = 6x^{2} + 18x + 12$ For f(x) lets find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 6x^{2} + 18x + 12 = 0$ $\Rightarrow 6(x^{2} + 3x + 2) = 0$ $\Rightarrow 6(x^{2} + 2x + x + 2) = 0$ $\Rightarrow x^{2} + 2x + x + 2 = 0$ $\Rightarrow (x + 2)(x + 1) = 0$ $\Rightarrow x = -1, -2$ clearly, f'(x) > 0 if -2 < x < -1 and f'(x) < 0 if x < -1 and x > -2 Thus, f(x) increases on x $\in (-2, -1)$ and f(x) is decreasing on interval $(-\infty, -2) \cup (-2, \infty)$

1 K. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 2x^3 - 9x^2 + 12x - 5$

Answer

Given:- Function $f(x) = 2x^3 - 9x^2 + 12x - 5$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = 2x^3 - 9x^2 + 12x - 5$$

$$\Rightarrow f(x) = \frac{d}{dx}(2x^3 - 9x^2 + 12x - 5)$$

$$\Rightarrow f'(x) = 6x^2 - 18x + 12$$

For f(x) lets find critical point, we must have

⇒ f'(x) = 0 ⇒ $6x^2 - 18x + 12 = 0$ ⇒ $6(x^2 - 3x + 2) = 0$ ⇒ $6(x^2 - 2x - x + 2) = 0$ ⇒ $x^2 - 2x - x + 2 = 0$ ⇒ (x - 2)(x - 1) = 0⇒ x = 1, 2clearly, f'(x) > 0 if x < 1 and x > 2 and f'(x) < 0 if 1 < x < 2 Thus, f(x) increases on (-∞, 1) ∪ (2, ∞) and f(x) is decreasing on interval x ∈ (1,2)

1 L. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 6 + 12x + 3x^2 - 2x^3$

Answer

Given:- Function $f(x) = -2x^3 + 3x^2 + 12x + 6$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = -2x^{3} + 3x^{2} + 12x + 6$$

$$\Rightarrow f'(x) = \frac{d}{dx}(-2x^{3} + 3x^{2} + 12x + 6)$$

$$\Rightarrow f'(x) = -6x^{2} + 6x + 12$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow -6x^{2} + 6x + 12 = 0$$

$$\Rightarrow -6x^{2} + 6x + 12 = 0$$

$$\Rightarrow 6(-x^{2} + x + 2) = 0$$

$$\Rightarrow 6(-x^{2} + 2x - x + 2) = 0$$

$$\Rightarrow x^{2} - 2x + x - 2 = 0$$

$$\Rightarrow (x - 2)(x + 1) = 0$$

$$\Rightarrow x = -1, 2$$

clearly, f'(x) > 0 if -1 < x < 2and f'(x) < 0 if x < -1 and x > 2Thus, f(x) increases on $x \in (-1, 2)$

and f(x) is decreasing on interval (– ∞ , –1) U (2, ∞)

1 M. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 2x^3 - 24x + 107$

Answer

Given:- Function $f(x) = 2x^3 - 24x + 107$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = 2x^{3} - 24x + 107$$

$$\Rightarrow f(x) = \frac{d}{dx}(2x^{3} - 24x + 107)$$

$$\Rightarrow f'(x) = 6x^{2} - 24$$
For f(x) lets find critical point, we must have
$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 6x^{2} - 24 = 0$$

$$\Rightarrow 6(x^{2} - 4) = 0$$

$$\Rightarrow (x - 2)(x + 2) = 0$$

$$\Rightarrow x = -2, 2$$
clearly, f'(x) > 0 if x < -2 and x > 2
and f'(x) < 0 if -2 < x < 2
Thus, f(x) increases on (-∞, -2) ∪ (2, ∞)
and f(x) is decreasing on interval x ∈ (-2,2)
1 N. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = -2x^3 - 9x^2 - 12x + 1$

Answer

Given:- Function $f(x) = -2x^3 - 9x^2 - 12x + 1$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

 $f(x) = -2x^3 - 9x^2 - 12x + 1$ \Rightarrow f'(x) = $\frac{d}{dx}(-2x^3 - 9x^2 - 12x + 1)$ \Rightarrow f'(x) = - 6x² - 18x - 12 For f(x) lets find critical point, we must have \Rightarrow f'(x) = 0 $\Rightarrow -6x^2 - 18x - 12 = 0$ $\Rightarrow 6x^{2} + 18x + 12 = 0$ $\Rightarrow 6(x^2 + 3x + 2) = 0$ $\Rightarrow 6(x^2 + 2x + x + 2) = 0$ $\Rightarrow x^{2} + 2x + x + 2 = 0$ $\Rightarrow (x+2)(x+1) = 0$ $\Rightarrow x = -1, -2$ clearly, f'(x) > 0 if x < -2 and x > -1and f'(x) < 0 if -2 < x < -1Thus, f(x) increases on $(-\infty, -2) \cup (-1, \infty)$ and f(x) is decreasing on interval $x \in (-2, -1)$

1 O. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = (x - 1) (x - 2)^2$

Answer

Given:- Function $f(x) = (x - 1) (x - 2)^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

 $f(x) = (x - 1) (x - 2)^{2}$ $\Rightarrow f(x) = \frac{d}{dx} ((x - 1) (x - 2)^{2})$ $\Rightarrow f'(x) = (x - 2)^{2} + 2(x - 2)(x - 1)$ $\Rightarrow f'(x) = (x - 2)(x - 2 + 2x - 2)$ $\Rightarrow f'(x) = (x - 2)(3x - 4)$ For f(x) lets find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow (x - 2)(3x - 4) = 0$ $\Rightarrow x = 2, \frac{4}{3}$ clearly, f'(x) > 0 if x < $\frac{4}{3}$ and x > 2 and f'(x) < 0 if $\frac{4}{3} < x < 2$ Thus, f(x) increases on $(-\infty, \frac{4}{3}) \cup (2, \infty)$ and f(x) is decreasing on interval $x \in (\frac{4}{3}, 2)$

1 P. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = x^3 - 12x^2 + 36x + 17$

Answer

Given:- Function $f(x) = x^3 - 12x^2 + 36x + 17$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = x^3 - 12x^2 + 36x + 17$$

⇒
$$f'(x) = \frac{d}{dx}(x^3 - 12x^2 + 36x + 17)$$

$$\Rightarrow f'(x) = 3x^2 - 24x + 36$$

For f(x) lets find critical point, we must have

⇒ f'(x) = 0 ⇒ $3x^2 - 24x + 36 = 0$ ⇒ $3(x^2 - 8x + 12) = 0$ ⇒ $3(x^2 - 6x - 2x + 12) = 0$ ⇒ $x^2 - 6x - 2x + 12 = 0$ ⇒ (x - 6)(x - 2) = 0⇒ x = 2, 6clearly, f'(x) > 0 if x < 2 and x > 6 and f'(x) < 0 if 2 < x < 6 Thus, f(x) increases on (-∞, 2) ∪ (6, ∞) and f(x) is decreasing on interval x ∈ (2, 6)

1 Q. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 2x^3 - 24x + 7$

Answer

Given:- Function $f(x) = 2x^3 - 24x + 7$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = 2x^{3} - 24x + 7$$

$$\Rightarrow f(x) = \frac{d}{dx}(2x^{3} - 24x + 7)$$

$$\Rightarrow f'(x) = 6x^{2} - 24$$
For f(x) to be increasing, we must have
$$\Rightarrow f'(x) > 0$$

$$\Rightarrow 6x^{2} - 24 > 0$$

$$\Rightarrow x^{2} < \frac{24}{6}$$

$$\Rightarrow x^{2} < 4$$

$$\Rightarrow x < -2, +2$$

$$\Rightarrow x \in (-\infty, -2) \text{ and } x \in (2, \infty)$$
Thus f(x) is increasing on interval $(-\infty, -2) \cup (2, \infty)$

Get More Learning Materials Here : 📕

CLICK HERE

Again, For f(x) to be increasing, we must have

f'(x) < 0 $\Rightarrow 6x^{2} - 24 < 0$ $\Rightarrow x^{2} > \frac{24}{6}$ $\Rightarrow x^{2} < 4$ $\Rightarrow x > -1$ $\Rightarrow x \in (-1, \infty)$

Thus f(x) is decreasing on interval $x \in (-1, \infty)$

1 R. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

Answer

Given:- Function $f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

$$\Rightarrow f(x) = \frac{d}{dx}(\frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11)$$

$$\Rightarrow f(x) = 4 \times \frac{3}{10}x^3 - 3 \times \frac{4}{5}x^2 - 6x + \frac{36}{5}$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow \frac{12}{10}x^3 - \frac{12}{5}x^2 - 6x + \frac{36}{5} = 0$$

$$\Rightarrow \frac{6}{5}(x - 1)(x + 2)(x - 3) = 0$$

$$\Rightarrow x = 1, -2, 3$$

Now, lets check values of f(x) between different ranges

Here points x = 1, -2 , 3 divide the number line into disjoint intervals namely, (- ∞ , -2),(-2, 1), (1, 3) and (3, ∞)

CLICK HERE

>>

Lets consider interval $(-\infty, -2)$

In this case, we have x - 1 < 0, x + 2 < 0 and x - 3 < 0Therefore, f'(x) < 0 when $-\infty < x < -2$ Thus, f(x) is strictly decreasing on interval $x \in (-\infty, -2)$ consider interval (-2, 1)In this case, we have x - 1 < 0, x + 2 > 0 and x - 3 < 0Therefore, f'(x) > 0 when -2 < x < 1Thus, f(x) is strictly increases on interval $x \in (-2, 1)$ Now, consider interval (1, 3)In this case, we have x - 1 > 0, x + 2 > 0 and x - 3 < 0Therefore, f'(x) < 0 when 1 < x < 3Thus, f(x) is strictly decreases on interval $x \in (1, 3)$ finally, consider interval $(3, \infty)$ In this case, we have x - 1 > 0, x + 2 > 0 and x - 3 > 0Therefore, f'(x) > 0 when x > 3

Thus, f(x) is strictly increases on interval $x \in (3, \infty)$

1 S. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = x^4 - 4x$

Answer

Given:- Function $f(x) = x^4 - 4x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

 $f(x) = x^{4} - 4x$ $\Rightarrow f'(x) = \frac{d}{dx}(x^{4} - 4x)$ $\Rightarrow f'(x) = 4x^{3} - 4$ For f(x) lets find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 4x^{3} - 4 = 0$

 $\Rightarrow 4(x^3 - 1) = 0$

 $\Rightarrow x = 1$

clearly, f'(x) > 0 if x > 1

and f'(x) < 0 if x < 1

Thus, f(x) increases on $(1, \infty)$

and f(x) is decreasing on interval $x \in (-\infty, 1)$

1 T. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{5}{2}x^2 - 6x + 7$$

Answer

Given:- Function $f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{5}{2}x^2 - 6x + 7$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{5}{2}x^2 - 6x + 7$$

$$\Rightarrow f'(x) = \frac{d}{dx}(\frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{5}{2}x^2 - 6x + 7)$$

$$\Rightarrow f'(x) = x^3 + 2x^2 - 5x - 6$$

For f(x) lets find critical point, we must have

⇒
$$f'(x) = 0$$

⇒ $x^3 + 2x^2 - 5x - 6 = 0$
⇒ $(x+1)(x-2)(x + 3) = 0$
⇒ $x = -1, 2, -3$
clearly, $f'(x) > 0$ if $-3 < x < -1$ and $x > 2$
and $f'(x) < 0$ if $x < -3$ and $-3 < x < -1$
Thus, $f(x)$ increases on $(-3, -1) \cup (2, \infty)$

and f(x) is decreasing on interval (∞ , -3) \cup (-1, 2)

1 U. Question

Find the intervals in which the following functions are increasing or decreasing.

CLICK HERE

>>

🕀 www.studentbro.in

$$f(x) = x^4 - 4x^3 + 4x^2 + 15$$

Answer

Given:- Function $f(x) = x^4 - 4x^3 + 4x^2 + 15$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing. Here we have,

$$f(x) = x^{4} - 4x^{3} + 4x^{2} + 15$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^{4} - 4x^{3} + 4x^{2} + 15)$$

$$\Rightarrow f'(x) = 4x^{3} - 12x^{2} + 8x$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 4x^{3} - 12x^{2} + 8x = 0$$

$$\Rightarrow 4(x^{3} - 3x^{2} + 2x) = 0$$

$$\Rightarrow x(x^{2} - 3x + 2) = 0$$

$$\Rightarrow x(x^{2} - 2x - x + 2) = 0$$

$$\Rightarrow x(x - 2)(x - 1)$$

$$\Rightarrow x = 0, 1, 2$$

clearly, f'(x) > 0 if 0 < x < 1 and x > 2

and f'(x) < 0 if x < 0 and 1 < x < 2
Thus, f(x) increases on (0, 1) U (2, \omega)
and f(x) is decreasing on interval (-\omega, 0) U (1, 2)

1 V. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 5x^{\frac{3}{2}} - 3x^{\frac{5}{2}}, x > 0$$

Answer

Given:- Function $f(x) = 5x^{\frac{3}{2}} - 3x^{\frac{5}{2}}x > 0$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing. Here we have,

$$f(x) = 5x^{\frac{3}{2}} - 3x^{\frac{5}{2}}, x > 0$$

$$\Rightarrow f'(x) = \frac{d}{dx}(5x^{\frac{3}{2}} - 3x^{\frac{5}{2}})$$

$$\Rightarrow f'(x) = \frac{15}{2}x^{\frac{1}{2}} - \frac{15}{2}x^{\frac{3}{2}}$$

$$\Rightarrow f'(x) = \frac{15}{2}x^{\frac{1}{2}}(1-x)$$

For f(x) lets find critical points

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow \frac{15}{2} x^{\frac{1}{2}} (1-x) = 0$$

$$\Rightarrow x^{\frac{1}{2}} (1-x) = 0$$

$$\Rightarrow x = 0, 1$$

Since x > 0, therefore only check the range on the positive side of the number line.

clearly, f'(x) > 0 if 0 < x < 1

and f'(x) < 0 if x > 1

Thus, f(x) increases on (0, 1)

and f(x) is decreasing on interval $x \in (1, \infty)$

1 W. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = x^8 + 6x^2$

Answer

Given:- Function $f(x) = x^8 + 6x^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = x^8 + 6x^2$$

$$\Rightarrow f'(x) = \frac{d}{dx}(8x^7 + 12x)$$

⇒ $f'(x) = 8x^7 + 12x$ ⇒ $f'(x) = 4x(2x^6 + 3)$ For f(x) lets find critical point, we must have ⇒ f'(x) = 0⇒ $4x(2x^6 + 3) = 0$ ⇒ $x(2x^6 + 3) = 0$ ⇒ $x(2x^6 + 3) = 0$ ⇒ $x = 0, \frac{1}{6}\sqrt{-\frac{3}{2}}$ Since $x = \frac{1}{6}\sqrt{-\frac{3}{2}}$ is a complex number, therefore

Since $x = \sqrt[\frac{1}{6}]{-\frac{3}{2}}$ is a complex number, therefore only check range on 0 sides of number line.

clearly, f'(x) > 0 if x > 0

and f'(x) < 0 if x < 0

Thus, f(x) increases on $(0, \infty)$

and f(x) is decreasing on interval $x \in (-\infty, 0)$

1 X. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = x^3 - 6x^2 + 9x + 15$

Answer

Given:- Function $f(x) = x^3 - 6x^2 + 9x + 15$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^3 - 6x^2 + 9x + 15$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^3 - 6x^2 + 9x + 15)$$

$$\Rightarrow f'(x) = 3x^2 - 12x + 9$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 3x^2 - 12x + 9 = 0$$

$$\Rightarrow 3(x^2 - 4x + 3) = 0$$

$$\Rightarrow 3(x^2 - 3x - x + 3) = 0$$

⇒ $x^2 - 3x - x + 3 = 0$ ⇒ (x - 3)(x - 1) = 0⇒ x = 1, 3clearly, f'(x) > 0 if x < 1 and x > 3and f'(x) < 0 if 1 < x < 3

Thus, f(x) increases on (- ∞ , 1) U (3, ∞)

and f(x) is decreasing on interval $x \in (1, 3)$

1 Y. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = \{x (x - 2)\}^2$

Answer

Given:- Function $f(x) = {x (x - 2)}^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = {x (x - 2)}^2$$

$$\Rightarrow f(x) = \{[x^2 - 2x]\}^2$$

$$\Rightarrow f'(x) = \frac{d}{dx}([x^2 - 2x]^2)$$

$$\Rightarrow f'(x) = 2(x^2 - 2x)(2x - 2)$$

 $\Rightarrow f'(x) = 4x(x-2)(x-1)$

For f(x) lets find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 4x(x-2)(x-1)=0$$

 $\Rightarrow x(x-2)(x-1)=0$

Now, lets check values of f(x) between different ranges

Here points x = 0, 1, 2 divide the number line into disjoint intervals namely, $(-\infty, 0)$, (0, 1), (1, 2) and $(2, \infty)$

Lets consider interval $(-\infty, 0)$ and (1, 2)

In this case, we have x(x-2)(x-1) < 0

Therefore, f'(x) < 0 when x < 0 and 1 < x < 2

Thus, f(x) is strictly decreasing on interval $(-\infty, 0) \cup (1, 2)$

Now, consider interval (0, 1) and $(2, \infty)$

In this case, we have x(x-2)(x-1) > 0

Therefore, f'(x) > 0 when 0 < x < 1 and x < 2

Thus, f(x) is strictly increases on interval $(0, 1)\cup(2, \infty)$

1 Z. Question

Find the intervals in which the following functions are increasing or decreasing.

 $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$

Answer

Given:- Function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = 3x^{4} - 4x^{3} - 12x^{2} + 5$$

$$\Rightarrow f'(x) = \frac{d}{dx}(3x^{4} - 4x^{3} - 12x^{2} + 5)$$

$$\Rightarrow f'(x) = 12x^{3} - 12x^{2} - 24x$$

$$\Rightarrow f'(x) = 12x(x^{2} - x - 2)$$

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow 12x(x^{2} - x - 2) > 0$$

$$\Rightarrow x(x^{2} - 2x + x - 2) > 0$$

$$\Rightarrow x(x - 2)(x + 1) > 0$$

$$\Rightarrow -1 < x < 0 \text{ and } x > 2$$

$$\Rightarrow x \in (-1,0) \cup (2, \infty)$$

Thus f(x) is increasing on interval (-1,0) \cup (2, \infty)
Again, For f(x) to be decreasing, we must have

$$f'(x) < 0$$

$$\Rightarrow 12x(x^{2} - x - 2) < 0$$

$$\Rightarrow x(x^{2} - 2x + x - 2) < 0$$

$$\Rightarrow x(x^{2} - 2x + x - 2) < 0$$

$$\Rightarrow x(x^{2} - 2x + x - 2) < 0$$

$$\Rightarrow x(x^{2} - 2x + x - 2) < 0$$

 $\Rightarrow -\infty < x < -1$ and 0 < x < 2

 $\Rightarrow x \in (-\infty, -1) \cup (0, 2)$

Thus f(x) is decreasing on interval $(-\infty, -1) \cup (0, 2)$

1 A1. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$$

Answer

Given:- Function $f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$$

$$\Rightarrow f'(x) = \frac{d}{dx}(\frac{3}{2}x^4 - 4x^3 - 45x^2 + 51)$$

$$\Rightarrow f'(x) = 6x^3 - 12x^2 - 90x$$

$$\Rightarrow f'(x) = 6x(x^2 - 2x - 15)$$

$$\Rightarrow f'(x) = 6x(x^2 - 5x + 3x - 15)$$

$$\Rightarrow f'(x) = 6x(x - 5)(x + 3)$$

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow 6x(x - 5)(x + 3) > 0$$

$$\Rightarrow -3 < x < 0 \text{ or } 5 < x < \infty$$

$$\Rightarrow x \in (-3,0)u(5, \infty)$$

Thus f(x) is increasing on interval (-3,0)u(5, \infty))
Again, For f(x) to be decreasing, we must have

$$f'(x) < 0$$

$$\Rightarrow 6x(x - 5)(x + 3) > 0$$

$$\Rightarrow -\infty < x < -3 \text{ or } 0 < x < 5$$

 $\Rightarrow x \in (-\infty, -3) \cup (0, 5)$

Thus f(x) is decreasing on interval $(-\infty, -3)\cup(0, 5)$

1 B1. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \log(2 + x) - \frac{2x}{2 + x}$$

Answer

Given:- Function $f(x) = log(2 + x) - \frac{2x}{2+x}$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = \log(2 + x) - \frac{2x}{2 + x}$$

$$\Rightarrow f'(x) = \frac{d}{dx} (\log(2 + x) - \frac{2x}{2 + x})$$

$$\Rightarrow f'(x) = \frac{1}{2 + x} - \frac{(2 + x)2 - 2x \times 1}{(2 + x)^2}$$

$$\Rightarrow f'(x) = \frac{1}{2 + x} - \frac{4 + 2x - 2x}{(2 + x)^2}$$

$$\Rightarrow f'(x) = \frac{1}{2 + x} - \frac{4}{(2 + x)^2}$$

$$\Rightarrow f'(x) = \frac{2 + x - 4}{(2 + x)^2}$$

$$\Rightarrow f'(x) = \frac{x - 2}{(2 + x)^2}$$

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

 $\Rightarrow \frac{x-2}{(2+x)^2} > 0$ $\Rightarrow (x - 2) > 0$ $\Rightarrow 2 < x < \infty$

Thus f(x) is increasing on interval $(2, \infty)$

Again, For f(x) to be decreasing, we must have

f'(x) < 0

 $\Rightarrow \frac{x-2}{(2+x)^2} < 0$ \Rightarrow (x - 2) < 0 $\Rightarrow -\infty < x < 2$ $\Rightarrow x \in (-\infty, 2)$

Thus f(x) is decreasing on interval $(-\infty, 2)$

2. Question

Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the line y = x + 5.

Answer

Given:- Function $f(x) = x^2 - 6x + 9$ and a line parallel to y = x + 5

Theorem:- Let f be a differentiable real function defined on an open interval (a, b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = x^{2} - 6x + 9$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^{2} - 6x + 9)$$

$$\Rightarrow f'(x) = 2x - 6$$

$$\Rightarrow f'(x) = 2(x - 3)$$
For f(x) lets find critical po

oint, we must have

 \Rightarrow f'(x) = 0 $\Rightarrow 2(x - 3) = 0$ \Rightarrow (x - 3) = 0 $\Rightarrow x = 3$ clearly, f'(x) > 0 if x > 3and f'(x) < 0 if x < 3Thus, f(x) increases on $(3, \infty)$ and f(x) is decreasing on interval $x \in (-\infty, 3)$ Now, lets find coordinates of point Equation of curve is $f(x) = x^2 - 6x + 9$

slope of this curve is given by

$$\Rightarrow m_1 = \frac{dy}{dx}$$
$$\Rightarrow m_1 = \frac{d}{dx}(x^2 - 6x + 9)$$
$$\Rightarrow m_1 = 2x - 6$$

and Equation of line is

$$y = x + 5$$

slope of this curve is given by

$$\Rightarrow m_2 = \frac{dy}{dx}$$
$$\Rightarrow m_2 = \frac{d}{dx}(x+5)$$
$$\Rightarrow m_2 = 1$$

Since slope of curve (i.e slope of its normal) is parallel to line

Therefore, they follow the relation

$$\Rightarrow \frac{-1}{m_1} = m_2$$
$$\Rightarrow \frac{-1}{2x-6} = 1$$
$$\Rightarrow 2x - 6 = -1$$
$$\Rightarrow x = \frac{5}{2}$$

Thus putting the value of x in equation of curve, we get

$$\Rightarrow y = x^{2} - 6x + 9$$

$$\Rightarrow y = \left(\frac{5}{2}\right)^{2} - 6\left(\frac{5}{2}\right) + 9$$

$$\Rightarrow y = \frac{25}{4} - 15 + 9$$

$$\Rightarrow y = \frac{25}{4} - 6$$

$$\Rightarrow y = \frac{1}{4}$$

Thus the required coordinates is $\left(\frac{5}{2}, \frac{1}{4}\right)$

3. Question

Find the intervals in which $f(x) = \sin x - \cos x$, where $0 < x < 2\pi$ is increasing or decreasing.

Answer

Given:- Function $f(x) = \sin x - \cos x$, $0 < x < 2\pi$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

 $f(x) = \sin x - \cos x$ $\Rightarrow f'(x) = \frac{d}{dx}(\sin x - \cos x)$ $\Rightarrow f'(x) = \cos x + \sin x$ For f(x) lets find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow \cos x + \sin x = 0$ $\Rightarrow \tan(x) = -1$ $\Rightarrow x = \frac{3\pi}{4}, \frac{7\pi}{4}$

Here these points divide the angle range from 0 to $2\prod$ since we have x as angle

clearly, f'(x) > 0 if $0 < x < \frac{3\pi}{4}$ and $\frac{7\pi}{4} < x < 2\pi$ and f'(x) < 0 if $\frac{3\pi}{4} < x < \frac{7\pi}{4}$ Thus, f(x) increases on $(0, \frac{3\pi}{4}) \cup (\frac{7\pi}{4}, 2\pi)$ and f(x) is decreasing on interval $(\frac{3\pi}{4}, \frac{7\pi}{4})$

4. Question

Show that $f(x) = e^{2x}$ is increasing on R.

Answer

Given:- Function $f(x) = e^{2x}$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = e^{2x}$$
$$\Rightarrow f'(x) = \frac{d}{dx}(e^{2x})$$

$$\Rightarrow$$
 f'(x) = 2e^{2x}

For f(x) to be increasing, we must have

$$\Rightarrow$$
 f'(x) > 0

 $\Rightarrow 2e^{2x} > 0$

 $\Rightarrow e^{2x} > 0$

since, the value of e lies between 2 and 3 so, whatever be the power of e (i.e x in domain R) will be greater than zero.

Thus f(x) is increasing on interval R

5. Question

Show that $f(x) = e^{\frac{1}{x}}$, $x \neq 0$ is a decreasing function for all $x \neq 0$.

Answer

Given:- Function $f(x) = e^{\frac{1}{x}}$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = e^{\frac{1}{x}}$$

$$\Rightarrow f'(x) = \frac{d}{dx} \left(e^{\frac{1}{x}} \right)$$

$$\Rightarrow f'(x) = e^{\frac{1}{x}} \left(\frac{-1}{x^2} \right)$$

$$\Rightarrow f'(x) = -\frac{e^{\frac{1}{x}}}{x^2}$$

1

As given $x \in R$, $x \neq 0$

$$\Rightarrow \frac{1}{x^2} > 0$$
 and $e^{\frac{1}{x}} > 0$

Their ratio is also greater than 0

$$\Rightarrow \frac{e^{\frac{1}{x}}}{x^2} > 0$$

 $\Rightarrow -\frac{e^{\frac{1}{2}}}{e^{\frac{1}{2}}} < 0$; as by applying -ve sign change in comparision sign

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all $x \neq 0$

6. Question

Show that $f(x) = \log_a x$, 0 < a < 1 is a decreasing function for all x > 0.

Answer

Given:- Function $f(x) = \log_a x$, 0 < a < 1

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

 $f(x) = \log_a x, 0 < a < 1$

$$\Rightarrow f(x) = \frac{d}{dx}(\log_a x)$$

$$\Rightarrow$$
 f(x) = $\frac{1}{x \log a}$

As given 0 < a < 1

$$\Rightarrow \log(a) < 0$$

and for x > 0

$$\Rightarrow \frac{1}{2} > 0$$

Therefore f'(x) is

$$\Rightarrow \frac{1}{\text{xloga}} < 0$$
$$\Rightarrow f'(x) < 0$$

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all x > 0

7. Question

Show that $f(x) = \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.

Answer

Given:- Function $f(x) = \sin x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

 $f(x) = \sin x$ $\Rightarrow f'(x) = \frac{d}{dx}(\sin x)$ $\Rightarrow f'(x) = \cos x$ Taking different region from 0 to 2π
a) let $x \in (0, \frac{\pi}{2})$ $\Rightarrow \cos(x) > 0$ $\Rightarrow f'(x) > 0$ Thus f(x) is increasing in $(0, \frac{\pi}{2})$ b) let $x \in (\frac{\pi}{2}, \pi)$ $\Rightarrow \cos(x) < 0$ $\Rightarrow f'(x) < 0$ Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Therefore, from above condition we find that

 \Rightarrow f(x) is increasing in $(0, \frac{\pi}{2})$ and decreasing in $(\frac{\pi}{2}, \pi)$

Hence, condition for $f(\boldsymbol{x})$ neither increasing nor decreasing in $(0,\pi)$

8. Question

Show that $f(x) = \log \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$.

Answer

Given:- Function $f(x) = \log \sin x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \log \sin x$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}(\log \sin x)$

$$\Rightarrow$$
 f'(x) = $\frac{1}{\sin x} \times \cos x$

$$\Rightarrow$$
 f'(x) = cot(x)

Taking different region from 0 to $\boldsymbol{\pi}$

a) let
$$x \in (0, \frac{\pi}{2})$$

 $\Rightarrow \cot(x) > 0$

 \Rightarrow f'(x) > 0

Thus f(x) is increasing in $(0, \frac{\pi}{2})$

b) let $x \in \left(\frac{\pi}{2}, \pi\right)$

 $\Rightarrow \cot(x) < 0$

 \Rightarrow f'(x) < 0

Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Hence proved

9. Question

Show that $f(x) = x - \sin x$ is increasing for all $x \in R$.

Answer

Given:- Function $f(x) = x - \sin x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

 $f(x) = x - \sin x$

 \Rightarrow f'(x) = $\frac{d}{dx}(x - \sin x)$

 \Rightarrow f'(x) = 1 - cos x

Now, as given

x e R

 $\Rightarrow -1 < \cos x < 1$

 $\Rightarrow -1 > \cos x > 0$

$$\Rightarrow$$
 f'(x) > 0

hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

10. Question

Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is an increasing function for all $x \in \mathbb{R}$.

Answer

Given:- Function $f(x) = x^3 - 15x^2 + 75x - 50$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

```
(i) Obtain the function and put it equal to f(x)
```

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

 $f(x) = x^3 - 15x^2 + 75x - 50$

⇒ $f'(x) = \frac{d}{dx}(x^3 - 15x^2 + 75x - 50)$

 $\Rightarrow f'(x) = 3x^2 - 30x + 75$

 $\Rightarrow f'(x) = 3(x^2 - 10x + 25)$

 $\Rightarrow f'(x) = 3(x - 5)^2$

Now, as given

хєR

 $\Rightarrow (x-5)^2 > 0$

 $\Rightarrow 3(x-5)^2 > 0$

$$\Rightarrow$$
 f'(x) > 0

hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

11. Question

Show that $f(x) = \cos^2 x$ is a decreasing function on $(0, \pi/2)$.

Answer

Given:- Function $f(x) = \cos^2 x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = \cos^2 x$$

$$\Rightarrow f'(x) = \frac{d}{dx}(\cos^2 x)$$

$$\Rightarrow$$
 f'(x) = 3cosx(-sinx)

 $\Rightarrow f'(x) = -2sin(x)cos(x)$


```
\Rightarrow f'(x) = -sin2x ; as sin2A = 2sinA cosA
```

Now, as given

 $\begin{aligned} \mathbf{x} \in \left(\mathbf{0}, \frac{\pi}{2}\right) \\ \Rightarrow 2\mathbf{x} \in (0, \pi) \\ \Rightarrow \operatorname{Sin}(2\mathbf{x}) > 0 \\ \Rightarrow -\operatorname{Sin}(2\mathbf{x}) < 0 \\ \Rightarrow f'(\mathbf{x}) < 0 \\ \text{hence, Condition for } f(\mathbf{x}) \text{ to be decreasing} \end{aligned}$

Thus f(x) is decreasing on interval $\left(0, \frac{\pi}{2}\right)$

Hence proved

12. Question

Show that $f(x) = \sin x$ is an increasing function on $(-\pi/2, \pi/2)$.

Answer

Given:- Function $f(x) = \sin x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \sin x$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}(\sin x)$

 \Rightarrow f'(x) = cosx

Now, as given

$$\mathbf{x} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

That is 4th quadrant, where

⇒ cosx> 0

 \Rightarrow f'(x) > 0

hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

13. Question

Show that $f(x) = \cos x$ is a decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor

CLICK HERE

>>>

🕀 www.studentbro.in

decreasing in $(-\pi, \pi)$.

Answer

Given:- Function $f(x) = \cos x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have.

$$f(x) = \cos x$$
$$\Rightarrow f'(x) = \frac{d}{dx}(\cos x)$$

 \Rightarrow f'(x) = -sinx

Taking different region from 0 to 2π

a) let $x \in (0, \pi)$

 $\Rightarrow sin(x) > 0$

 $\Rightarrow -sinx < 0$

 \Rightarrow f'(x) < 0

Thus f(x) is decreasing in $(0, \pi)$

b) let $x \in (-\pi, 0)$

 $\Rightarrow sin(x) < 0$

 $\Rightarrow -sinx > 0$

 $\Rightarrow f'(x) > 0$

Thus f(x) is increasing in $(-\pi, 0)$

Therefore, from above condition we find that

 \Rightarrow f(x) is decreasing in (0, π) and increasing in ($-\pi$, 0)

Hence, condition for f(x) neither increasing nor decreasing in $(-\pi,\pi)$

14. Question

Show that $f(x) = \tan x$ is an increasing function on $(-\pi/2, \pi/2)$.

Answer

Given:- Function $f(x) = \tan x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

f(x) = tan x

 \Rightarrow f'(x) = $\frac{d}{dx}(\tan x)$

$$\Rightarrow$$
 f'(x) = sec²x

Now, as given

$$\mathbf{x} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

That is 4th quadrant, where

 $\Rightarrow \sec^2 x > 0$

 \Rightarrow f'(x) > 0

hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

15. Question

Show that $f(x) = \tan^{-1} (\sin x + \cos x)$ is a decreasing function on the interval ($\pi/4$, $\pi/2$).

Answer

Given:- Function $f(x) = \tan^{-1} (\sin x + \cos x)$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = \tan^{-1} (\sin x + \cos x)$$

$$\Rightarrow f'(x) = \frac{d}{dx} (\tan^{-1} (\sin x + \cos x))$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given

$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

 \Rightarrow Cosx - sinx < 0 ; as here cosine values are smaller than sine values for same angle

 $\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$

hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

16. Question

Show that the function $f(x) = sin\left(2x + \frac{\pi}{4}\right)$ is decreasing on $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$

Answer

Given:- Function $f(x) = \sin(2x + \frac{\pi}{4})$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = \sin \left(2x + \frac{\pi}{4}\right)$$

$$\Rightarrow f'(x) = \frac{d}{dx} \left\{ \sin \left(2x + \frac{\pi}{4}\right) \right\}$$

$$\Rightarrow f'(x) = \cos \left(2x + \frac{\pi}{4}\right) \times 2$$

$$\Rightarrow f'(x) = 2\cos \left(2x + \frac{\pi}{4}\right)$$

Now, as given

$$x \in \left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$$
$$\Rightarrow \frac{3\pi}{8} < x < \frac{5\pi}{8}$$
$$\Rightarrow \frac{3\pi}{4} < 2x < \frac{5\pi}{4}$$
$$\Rightarrow \pi < 2x + \frac{\pi}{4} < \frac{3\pi}{2};$$

as here $2x + \frac{\pi}{4}$ lies in 3rd quadrant

$$\Rightarrow \cos\left(2x + \frac{\pi}{4}\right) < 0$$
$$\Rightarrow 2\cos\left(2x + \frac{\pi}{4}\right) < 0$$

 \Rightarrow f'(x) < 0

hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$

17. Question

Show that the function $f(x) = \cot^{-1} (\sin x + \cos x)$ is decreasing on $(0, \pi/4)$ and increasing on $(\pi/4, \pi/2)$.

Answer

Given:- Function $f(x) = \cot^{-1} (\sin x + \cos x)$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = \cot^{-1} (\sin x + \cos x)$$

$$\Rightarrow f'(x) = \frac{d}{dx} \{\cot^{-1}(\sin x + \cos x)\}$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given

$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

 \Rightarrow Cosx - sinx < 0 ; as here cosine values are smaller than sine values for same angle

$$\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$$

hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

18. Question

Show that $f(x) = (x - 1) e^{x} + 1$ is an increasing function for all x > 0.

Answer

Given:- Function $f(x) = (x - 1) e^{x} + 1$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing. Here we have,

$$f(x) = (x - 1) e^{x} + 1$$

$$\Rightarrow f'(x) = \frac{d}{dx}((x - 1)e^{x} + 1)$$

$$\Rightarrow f'(x) = e^{x} + (x - 1) e^{x}$$

$$\Rightarrow f'(x) = e^{x}(1 + x - 1)$$

$$\Rightarrow f'(x) = xe^{x}$$
as given
$$x > 0$$

$$\Rightarrow e^{x} > 0$$

$$\Rightarrow xe^{x} > 0$$

$$\Rightarrow f'(x) > 0$$
Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval x > 0

19. Question

Show that the function $x^2 - x + 1$ is neither increasing nor decreasing on (0, 1).

Answer

Given:- Function $f(x) = x^2 - x + 1$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Get More Learning Materials Here : 📕

CLICK HERE

Here we have,

$$f(x) = x^{2} - x + 1$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^{2} - x + 1)$$

$$\Rightarrow f'(x) = 2x - 1$$

Taking different region from (0, 1)

a) let $x \in (0, \frac{1}{2})$ $\Rightarrow 2x - 1 < 0$ $\Rightarrow f'(x) < 0$

Thus f(x) is decreasing in
$$(0, \frac{1}{2})$$

b) let $x \in \left(\frac{1}{2}, 1\right)$ $\Rightarrow 2x - 1 > 0$

 \Rightarrow f'(x) > 0

Thus f(x) is increasing in $(\frac{1}{2}, 1)$

Therefore, from above condition we find that

 \Rightarrow f(x) is decreasing in $(0, \frac{1}{2})$ and increasing in $(\frac{1}{2}, 1)$

Hence, condition for f(x) neither increasing nor decreasing in (0, 1)

20. Question

Show that $f(x) = x^9 + 4x^7 + 11$ is an increasing function for all $x \in R$.

Answer

Given:- Function $f(x) = x^9 + 4x^7 + 11$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing. Here we have,

$$f(x) = x^9 + 4x^7 + 11$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^9 + 4x^7 + 11)$$
$$\Rightarrow f'(x) = 9x^8 + 28x^6$$
$$\Rightarrow f'(x) = x^6(9x^2 + 28)$$

as given

x e R

 $\Rightarrow x^{6} > 0 \text{ and } 9x^{2} + 28 > 0$ $\Rightarrow x^{6}(9x^{2} + 28) > 0$ $\Rightarrow f'(x) > 0$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

21. Question

Prove that the function $f(x) = x^3 - 6x^2 + 12x - 18$ is increasing on R.

Answer

Given:- Function $f(x) = x^3 - 6x^2 + 12x - 18$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing. Here we have,

$$f(x) = x^{3} - 6x^{2} + 12x - 18$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^{3} - 6x^{2} + 12x - 18)$$

$$\Rightarrow f'(x) = 3x^{2} - 12x + 12$$

$$\Rightarrow f'(x) = 3(x^{2} - 4x + 4)$$

$$\Rightarrow f'(x) = 3(x - 2)^{2}$$

as given

$$x \in \mathbb{R}$$

$$\Rightarrow (x - 2)^{2} > 0$$

$$\Rightarrow 3(x - 2)^{2} > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

22. Question

State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function $f(x) = x^2 - 6x + 3$ is increasing on the interval [4, 6].

Answer

Given:- Function $f(x) = f(x) = x^2 - 6x + 3$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

 $f(x) = f(x) = x^{2} - 6x + 3$ $\Rightarrow f'(x) = \frac{d}{dx}(x^{2} - 6x + 3)$ $\Rightarrow f'(x) = 2x - 6$ $\Rightarrow f'(x) = 2(x - 3)$ Here A function is said to be increasing on [a,b] if f(x) > 0 as given $x \in [4, 6]$ $\Rightarrow 4 \le x \le 6$ $\Rightarrow 1 \le (x-3) \le 3$ $\Rightarrow (x - 3) > 0$

 $\Rightarrow 2(x - 3) > 0$

$$\Rightarrow$$
 f'(x) > 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in [4, 6]$

23. Question

Show that $f(x) = \sin x - \cos x$ is an increasing function on $(-\pi /4, \pi /4)$?

Answer

we have,

 $f(x) = \sin x - \cos x$

 $f'(x) = \cos x + \sin x$

$$= \sqrt{2}\left(\frac{1}{\sqrt{2}}\cos x + \frac{1}{\sqrt{2}}\sin x\right)$$
$$= \sqrt{2}\left(\frac{\sin \pi}{4}\cos x + \frac{\cos \pi}{4}\sin x\right)$$

$$=\sqrt{2}\sin\left(\frac{\pi}{4}+x\right)$$

Now,

$$x \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$$

$$\Rightarrow -\frac{\pi}{4} < x < \frac{\pi}{4}$$
$$\Rightarrow 0 < \frac{\pi}{4} + x < \frac{\pi}{2}$$
$$\Rightarrow \sin^{\circ} < \sin\left(\frac{\pi}{4} + x\right) < \sin\frac{\pi}{2}$$
$$\Rightarrow 0 < \sin\left(\frac{\pi}{4} + x\right) < 1$$
$$\Rightarrow \sqrt{2}\sin\left(\frac{\pi}{4} + x\right) > 0$$
$$\Rightarrow f'(x) > 0$$

Hence, f(x) is an increasing function on $(-\pi /4, \pi /4)$

24. Question

Show that $f(x) = \tan^{-1} x - x$ is a decreasing function on R ?

Answer

we have,

$$f(x) = \tan^{-1} x - x$$
$$f'(x) = \frac{1}{1 + x^2} - 1$$
$$= -\frac{x^2}{1 + x^2}$$

Now,

x e R

 $\Rightarrow x^2 > 0$ and $1 + x^2 > 0$

$$\Rightarrow \frac{x^2}{1+x^2} > 0$$
$$\Rightarrow -\frac{x^2}{1+x^2} < 0$$

 $\Rightarrow f'(x) < 0$

Hence, f(x) is an decreasing function for R

25. Question

Determine whether $f(x) = x/2 + \sin x$ is increasing or decreasing on $(-\pi /3, \pi/3)$?

Answer

we have,

$$f(x) = -\frac{x}{2} + \sin x$$
$$= f'(x) = -\frac{1}{2} + \cos x$$

Now,

$$x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$$
$$\Rightarrow -\frac{\pi}{3} < x < \frac{\pi}{3}$$

$$\Rightarrow \cos\left(-\frac{\pi}{3}\right) < \cos x < \cos\frac{\pi}{3}$$
$$\Rightarrow \cos\left(\frac{\pi}{3}\right) < \cos x < \cos\frac{\pi}{3}$$
$$\Rightarrow \frac{1}{2} < \cos x < \frac{1}{2}$$
$$\Rightarrow -\frac{1}{2} + \cos x > 0$$
$$\Rightarrow f'(x) > 0$$

Hence, f(x) is an increasing function on (- π /3, π /3)

26. Question

Find the interval in which $f\left(x\right) = log\left(1+x\right) - \frac{x}{1+x}$ is increasing or decreasing ?

Answer

we have

$$f(x) = \log(1+x) - \frac{x}{1+x}$$
$$f'(x) = \frac{1}{1+x} - \left(\frac{(1+x)-x}{(1+x)^2}\right)$$
$$= \frac{1}{1+x} - \left(\frac{1}{(1+x)^2}\right)$$
$$= \frac{x}{(1+x)^2}$$

Critical points

$$f'(x) = 0$$

$$\Rightarrow \frac{x}{(1+x)^2} = 0$$

⇒x = 0, -1

Clearly, f'(x) > 0 if x > 0

And f'(x) < 0 if -1 < x < 0 or x < -1

Hence, f(x) increases in $(0,\infty)$, decreases in $(-\infty, -1) \cup (-1, 0)$

27. Question

Find the intervals in which $f(x) = (x + 2)e^{-x}$ is increasing or decreasing ?

Answer

we have,

 $f(x) = (x + 2)e^{-x}$ $f'(x) = e^{-x} - e^{-x} (x+2)$ $= e^{-x} (1 - x - 2)$ $= -e^{-x} (x+1)$

Critical points

f'(x) = 0 $\Rightarrow -e^{-x} (x + 1) = 0$ $\Rightarrow x = -1$ Clearly f'(x) > 0 if x < -1

f'(x) < 0 if x > -1

Hence f(x) increases in $(-\infty, -1)$, decreases in $(-1, \infty)$

28. Question

Show that the function f given by $f(x) = 10^x$ is increasing for all x ?

Answer

we have,

 $f(x) = 10^{x}$

 $\therefore f'(x) = 10^x \text{ log10}$

Now,

x e R

⇒10^x > 0

 $\Rightarrow 10^{x} \log 10 > 0$

 \Rightarrow f'(x)>0

Hence, f(x) in an increasing function for all x

29. Question

Prove that the function f given by f(x) = x - [x] is increasing in (0, 1)?

Answer

we have,

f(x) = x - [x]

 $\therefore f'(x) = 1 > 0$

 \therefore f(x) is an increasing function on (0,1)

30. Question

Prove that the following function is increasing on r?

i.
$$f(x) = 3x^5 + 40x^3 + 240x$$

ii.
$$f(x) = 4x^3 - 18x^2 + 27x - 27$$

Answer

(i) we have

$$f(x) = 3x^{5} + 40x^{3} + 240x$$

$$\therefore f'(x) = 15x^{4} + 120x^{2} + 240$$

$$= 15(x^{4} + 8x^{2} + 16)$$

$$= 15(x^{2} + 4)^{2}$$

Now,

 $x \in R$ $\Rightarrow (x^{2} + 4)^{2} > 0$ $\Rightarrow 15(x^{2} + 4)^{2} > 0$ $\Rightarrow f'(x) > 0$ Hence, f(x) is an increasing function for all x (ii) we have $f(x) = 4x^{3} - 18x^{2} + 27x - 27$

 $f'(x) = 12x^2 - 36x + 27$

 $= 12x^2 - 18x - 18x + 27$

$$=3(2x-3)^{2}$$

Now,

 $x \in R$

 $\Rightarrow (2x-3)^2 > 0$

 $\Rightarrow 3(2x-3)^2 > 0$

$$\Rightarrow f'(x) > 0$$

Hence, f(x) is an increasing fuction for all x

31. Question

Prove that the function f given by $f(x) = \log \cos x$ is strictly increasing on $(-\pi/2, 0)$ and strictly decreasing on $(0, \pi/2)$?

Answer

we have,

 $f(x) = \log \cos x$

$$\therefore f'(x) = \frac{1}{\cos x}(-\sin x) = -\tan x$$

In Interval $(0,\frac{\pi}{2})$, tan x > 0 $\Rightarrow -\tan x < 0$

$$\therefore f'(x) < 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

 \therefore f is strickly decreasing on $\left(0, \frac{\pi}{2}\right)$

In interval $(\frac{\pi}{2}, \pi)$, tan x < 0 \Rightarrow $-\tan x > 0$

$$\therefore$$
 f'(x) > 0 on $\left(\frac{\pi}{2}, \pi\right)$

32. Question

Prove that the function f given by $f(x) = x^3 - 3x^2 + 4x$ is strictly increasing on R ?

Answer

given $f(x) = x^3 - 3x^2 + 4x$ $\therefore f(x) = 3x^2 - 6x + 4$ $= 3(x^2 - 2x + 1) + 1$

 $= 3(x-1)^2 + 1 > 0$ for all $x \in R$

Hence f(x) is strickly increasing on R

33. Question

- 33 Prove that the function $f(x) = \cos x$ is :
- i. strictly decreasing on (0, π)
- ii. strictly increasing in (π , 2π)
- iii. neither increasing nor decreasing in (0, 2 $\pi)$

Answer

Given $f(x) = \cos x$

- $\therefore f'(x) = -\sin x$
- (i) Since for each $x \in (0, \pi)$, sin x > 0

So f is strictly decreasing in (0, $_{I\!I\!I}$)

(ii) Since for each x $\in (\pi, 2\pi)$, sin x <0

```
⇒ ∴ f '(x) > 0
```

So f is strictly increasing in (__,2__)

(iii) Clearly from (1) and (2) above, f is neither increasing nor decreasing in (0,2 $_{\pi}$)

34. Question

Show that $f(x) = x^2 - x \sin x$ is an increasing function on $(0, \pi/2)$?

Answer

We have,

 $f(x) = x^2 - x \sin x$

```
f'(x) = 2x - \sin x - x \cos x
```

Now,

```
X \in (0, \frac{\pi}{2})
```

 $\Rightarrow 0 \leq \sin x \leq 1, 0 \leq \cos x \leq 1,$

 \Rightarrow 2x-sin x -x cos x > 0

```
\Rightarrow f'(x) \ge 0
```

Hence, f(x) is an increasing function on $(0, \frac{\pi}{2})$.

35. Question

Find the value(s) of a for which $f(x) = x^3$ – ax is an increasing function on R ?

Answer

We have,

 $f(x) = x^{3}$ ax

$$f'(x) = 3x^2 - a$$

Given that f(x) is on increasing function

 \therefore f'(x)0 for all x \in R

 \Rightarrow 3x² - a > 0 for all x \in R

 \Rightarrow a < $3x^2$ for all x \in R

But the last value of $3x^2 = 0$ for x = 0

∴a ≤ 0

36. Question

Find the values of b for which the function $f(x) = \sin x - bx + c$ is a decreasing function on R?

Answer

We have,

 $f(x) = \sin x - bx + c$

$$f'(x) = \cos x - b$$

Given that f(x) is on decreasing function on R

 \therefore f'(x) < 0 for all x \in R

 \Rightarrow cosx -b > 0 for all x $\in R$

 $\Rightarrow b < _{COSX}$ for all x $_{E}$ R

But the last value of cos x in 1

```
∴ b ≥ 1
```

37. Question

Show that $f(x) = x + \cos x - a$ is an increasing function on R for all values of a ?

Answer

We have,

 $f(x) = x + \cos x - a$

$$f'(x) = 1 - \sin x = \frac{2\cos^2 x}{2}$$

Now,

 $x \in R$

$$\Rightarrow \frac{\cos^2 x}{2} > 0$$
$$\Rightarrow \frac{2\cos^2 x}{2} > 0$$

Hence, f(x) is an increasing function for $x \in R$

38. Question

Let F defined on [0, 1] be twice differentiable such that $|f''(x)| \le 1$ for all $x \in [0, 1]$. If f(0) = f(1), then show that |f'(x)| < 1 for all $x \in [0, 1]$?

CLICK HERE

 \gg

Answer

As f(0) = f(1) and f is differentiable, hence by Rolles theorem:

f'(c) = 0 for some $c \in [0,1]$

let us now apply LMVT (as function is twice differentiable) for point c and $x \in [0,1]$,

hence,

$$\frac{|\mathbf{f}'(\mathbf{x}) - \mathbf{f}(\mathbf{c})|}{\mathbf{x} - \mathbf{c}} = \mathbf{f}''(\mathbf{d})$$
$$\Rightarrow \frac{|\mathbf{f}'(\mathbf{x}) - \mathbf{0}|}{\mathbf{x} - \mathbf{c}} = \mathbf{f}''(\mathbf{d})$$
$$\Rightarrow \frac{|\mathbf{f}'(\mathbf{x})|}{\mathbf{x} - \mathbf{c}} = \mathbf{f}''(\mathbf{d})$$

A given that $| f''(d) | \le 1$ for $x \in [0,1]$

$$\Rightarrow \frac{|\mathbf{f}'(\mathbf{x})|}{\mathbf{x}-\mathbf{c}} \le 1$$
$$\Rightarrow |\mathbf{f}'(\mathbf{x})| \le \mathbf{x} - \mathbf{c}$$

Now both x and c lie in [0,1], hence $\mathbf{x} - \mathbf{c} \in [0,1]$

39. Question

Find the intervals in which f(x) is increasing or decreasing :

i. $f(x) = x |x|, x \in R$ ii. $f(x) = \sin x + |\sin x|, 0 < x \le 2 \pi$ iii. $f(x) = \sin x (1 + \cos x), 0 < x < \pi/2$

Answer

(i): Consider the given function,

 $f(x) = x |x|, x \in R$

$$\Rightarrow f(x) = \begin{cases} -x^2, x < 0 \\ x^2, x > 0 \end{cases}$$
$$\Rightarrow f'(x) = \begin{cases} -2x, x < 0 \\ 2x, x > 0 \end{cases}$$

Therefore, f(x) is an increasing function for all real values.

(ii): Consider the given function,

 $f(x) = \sin x + |\sin x|, 0 < x \le 2_{\pi}$

⇒ f(x) = {
$$2 \sin x, 0 < x \le \pi$$

0, $\pi < x \le 2\pi$
⇒ f(x) = { $2 \cos x, 0 < x \le \pi$
0, $\pi < x \le 2\pi$

The function 2cos x will be positive between $(0,\frac{\pi}{2})$

Hence the function f(x) is increasing in the interval $(0,\frac{\pi}{2})$

The function 2cos x will be negative between $(\frac{\pi}{2}, \pi)$

Hence the function f(x) is decreasing in the interval $(\frac{\pi}{2}, \pi)$

The value of f'(x) = 0, when, $\pi < x \le 2 \pi$

Therefore, the function f(x) is neither increasing nor decreasing in the interval $(\pi, 2\pi)$

(iii): consider the function,

 $f(x) = \sin x(1 + \cos x), 0 < x < \frac{\pi}{2}$ $\Rightarrow f'(x) = \cos x + \sin x(-\sin x) + \cos x(\cos x)$ $\Rightarrow f'(x) = \cos x - \sin^2 x + \cos^2 x$ $\Rightarrow f'(x) = \cos x + (\cos^2 x - 1) + \cos^2 x$ $\Rightarrow f'(x) = \cos x + 2\cos^2 x - 1$ $\Rightarrow f'(x) = (2\cos x - 1)(\cos x + 1)$ for f(x) to be increasing, we must have, f'(x) > 0 $\Rightarrow f'(x) = (2\cos x - 1)(\cos x + 1)$ $\Rightarrow 0 < x < \frac{\pi}{3}$ So, f(x) to be decreasing, we must have, f'(x) < 0 $\Rightarrow f'(x) = (2\cos x - 1)(\cos x + 1)$ $\Rightarrow \frac{\pi}{3} < x < \frac{\pi}{2}$ $\Rightarrow x \in (\frac{\pi}{3}, \frac{\pi}{2})$

So, f(x) is decreasing in $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

MCQ

1. Question

Mark the correct alternative in the following:

The interval of increase of the function $f(x) = x - e^x + \tan\left(\frac{2\pi}{7}\right)$ is

- A. (0, ∞)
- B. (-∞, 0)
- C. (1, ∞)
- D. (-∞, 1)

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

$$f(x) = x - e^{x} + \tan\left(\frac{2\pi}{7}\right)$$
$$d\left(\frac{f(x)}{dx}\right) = 1 - e^{x} = f'(x)$$

Now

f′(x)>0 ⇒1-e

x>0

X<0

x ∈ (−∞, 0)

2. Question

Mark the correct alternative in the following:

The function $f(x) = \cos^{-1} x + x$ increases in the interval.

- A. (1, ∞)
- B.(-1,∞)
- C. (−∞, ∞)
- D. (0, ∞)

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = \cos^{-1} x + x$

$$d\left(\frac{f(x)}{dx}\right) = \frac{x^2}{1+x^2} = f'(x)$$

Now

f'(x)>0

$$\Rightarrow \frac{x^2}{1+x^2} > 0$$

x∈R

⇒x∈(-∞, ∞)

3. Question

Mark the correct alternative in the following:

The function $f(x) = x^x$ decreases on the interval.

A. (0, e)

B. (0, 1)

C. (0, 1/e)

D. (1/e, e)

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

 $f(x) = x^x$

$$d\left(\frac{f(x)}{dx}\right) = x^{x}(1 + \log x) = f'(x)$$

now for decreasing

f'(x)<0

 $\Rightarrow x^{x}(1+\log x) < 0$

 \Rightarrow (1+logx)<0

⇒logx<-1

⇒x<e⁻¹

$$x \in \left(0, \frac{1}{e}\right)$$

4. Question

Mark the correct alternative in the following:

The function $f(x) = 2\log(x - 2) - x^2 + 4x + 1$ increases on the interval.

A. (1, 2)

B. (2, 3)

C. ((1, 3)

D. (2, 4)

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

 $f(x) = 2\log(x - 2) - x^2 + 4x + 1$

$$d\left(\frac{f(x)}{dx}\right) = \frac{2}{x-2} - 2x + 4 = f'(x)$$

$$\Rightarrow f'(x) = -\frac{2(x-1)(x-3)}{x-2}$$

now for increasing

f'(x)>0

$$\Rightarrow -\frac{2(x-1)(x-3)}{x-2} < 0$$

x −3<0 and x-2>0

x < 3 and x>2

 $x \in (2,3)$

5. Question

Mark the correct alternative in the following:

If the function $f(x) = 2x^2 - kx + 5$ is increasing on [1, 2], then k lies in the interval.

A. (-∞, 4)

B. (4, ∞)

C. (-∞, 8)

D. (8, ∞)

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

$$f(x) = 2x^{2} - kx + 5$$
$$d\left(\frac{f(x)}{dx}\right) = 4x - k = f'(x)$$

f[′](x)>0

⇒4x-k>0

⇒K<4x

For x=1

⇒K<4

6. Question

Mark the correct alternative in the following:

Let $f(x) = x^3 + ax^2 + bx + 5 \sin^2 x$ be an increasing function on the set R. Then, a and b satisfy.

- A. $a^2 3b 15 > 0$ B. $a^2 - 3b + 15 > 0$
- C. $a^2 3b + 15 < 0$

D. a > 0 and b > 0

Answer

Formula:- (i) $ax^2+bx+c>0$ for all $x \Rightarrow a>0$ and $b^2-4ac<0$

(ii) $ax^2+bx+c<0$ for all $x \Rightarrow a<0$ and $b^2-4ac<0$

(iii)The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

$$f(x) = x^3 + ax^2 + bx + 5 sin^2x$$

$$d\left(\frac{f(x)}{dx}\right) = 3x^2 + 2ax + b + 5sin^2x = f'(x)$$

For increasing function f'(x) > 0

```
3x^{2}+2ax+b+5sin2x>0
Then
3x^{2}+2ax+b-5<0
And b<sup>2</sup>-4ac<0
\Rightarrow 4a^{2}-12(b-5)<0
\Rightarrow a^{2}-3b+15<0
\Rightarrow a^{2}-3b+15<0
```


7. Question

Mark the correct alternative in the following:

The function $f(x) = \log_e \left(x^3 + \sqrt{x^6 + 1}\right)$ is of the following types:

- A. even and increasing
- B. odd and increasing
- C. even and decreasing
- D. odd and decreasing

Answer

Formula:- (i) if f(-x)=f(x) then function is even

(ii) if f(-x)=-f(x) then function is odd

(iii) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = \log_{e}(x^{3} + \sqrt{x^{6} + 1})$

$$d\left(\frac{f(x)}{dx}\right) = \frac{1}{x^3(x^6+1)^{\frac{1}{2}}} \left(3x^2 + \frac{6x^5}{2(x^6+1)^{\frac{1}{2}}}\right)$$

f'(x)>0

hence function is increasing function

 $f(-x) = -\log(\log_{e}(x^{3} + \sqrt{x^{6} + 1}))$

 \Rightarrow f(-x)=-f(x) is odd function

8. Question

Mark the correct alternative in the following:

If the function $f(x) = 2\tan x + (2a + 1) \log_e |\sec x| + (a - 2) x$ is increasing on R, then

A.
$$a \in \left(\frac{1}{2}, \infty\right)$$

B. $a \in \left(-\frac{1}{2}, \frac{1}{2}\right)$

C.
$$a = \frac{1}{2}$$

 $\mathsf{D.}\ a\in R$

Answer

Formula:- (i) $ax^2+bx+c>0$ for all $x \Rightarrow a>0$ and $b^2-4ac<0$

(ii) $ax^2+bx+c<0$ for all $x \Rightarrow a<0$ and $b^2-4ac<0$

(iii) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

CLICK HERE

R www.studentbro.in

Given:-

 $f(x) = 2\tan x + (2a+1)\log_{e} |\sec x| + (a-2)x$ $d\left(\frac{f(x)}{dx}\right) = 2\sec^{2}x + \frac{(2a+1)\sec x \tan x}{\sec x} + (a-2) = f(x)$ $\Rightarrow f'(x) = 2\sec^{2}x + (2a+1)\tan x + (a-2)$ $\Rightarrow f'(x) = 2(\tan^{2}+1) + (2a+1) \cdot \tan x + (a-2)$ $\Rightarrow f'(x) = 2\tan^{2}x + 2a\tan x + \tan x + a$ For increasing function f'(x) > 0 $\Rightarrow 2\tan^{2}x + 2a\tan x + \tan x + a > 0$ From formula (i) $(2a+1)^{2} \cdot 8a < 0$ $\Rightarrow 4\left(a - \frac{1}{2}\right)^{2} < 0$

$$\Rightarrow a = \frac{1}{2}$$

9. Question

Mark the correct alternative in the following:

Let $f(x) = \tan^{-1} (g(x))$, where g(x) is monotonically increasing for $0 < x < \frac{\pi}{2}$. Then, f(x) is

A. increasing on $\left(0, \frac{\pi}{2}\right)$ B. decreasing on $\left(0, \frac{\pi}{2}\right)$ C. increasing on $\left(0, \frac{\pi}{4}\right)$ and decreasing on $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

D. none of these

Answer

Formula:-

(i)The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

Given:- $f(x) = \tan^{-1} (g(x))$

$$\frac{d(f(x))}{dx} = \frac{g'(x)}{1 + (g(x))^2} = f'(x)$$

For increasing function

f'(x)>0

$$x \in \left(0, \frac{\pi}{2}\right)$$

10. Question

Mark the correct alternative in the following:

Let $f(x) = x^3 - 6x^2 + 15x + 3$. Then,

A. f(x) > 0 for all $x \in R$

B. f(x) > f(x + 1) for all $x \in R$

C. f(x) in invertible

D. f(x) < 0 for all $x \in R$

Answer

Formula:- (i)The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

(ii)If f(x) is strictly increasing function on interval [a, b], then f^{-1} exist and it is also a strictly increasing function

Given:- $f(x) = x^3 - 6x^2 + 15x + 3$

 $\frac{d(f(x))}{dx} = 3x^2 - 12x + 15 = f'(x)$

 $\Rightarrow f'(x) = 3(x-2)^2 + \frac{1}{3}$

$$\Rightarrow f'(x) = 3(x-2)^2 + \frac{1}{3}$$

Therefore f'(x) will increasing

Also $f^{-1}(x)$ is possible

Therefore f(x) is invertible function.

11. Question

Mark the correct alternative in the following:

The function $f(x) = x^2 e^{-x}$ is monotonic increasing when

A.
$$x \in R - [0, 2]$$

B. $0 < x < 2$
C. $2 < x < \infty$
D. $x < 0$
Answer
 $f(x) = x^2 e^{-x}$
 $\frac{d(f(x))}{dx} = xe^{-x}(2-x) = f'(x)$
for

f'(x)=0

$$\Rightarrow x^2 e^{-x} = 0$$

⇒x(2-x)=0

x=2,x=0

f(x) is increasing in (0,2)

12. Question

Mark the correct alternative in the following:

Function $f(x) = \cos x - 2\lambda x$ is monotonic decreasing when

A.
$$\lambda > \frac{1}{2}$$

B. $\lambda < \frac{1}{2}$
C. $\lambda < 2$
D. $\lambda > 2$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly decreasing on (a,b) is that f'(x) < 0 for all $x \in (a,b)$

Given:-

 $f(x) = cosx - 2\lambda x$

$$\frac{d(f(x))}{dx} = -\sin x - 2\lambda = f'(x)$$

for decreasing function f'(x) < 0

-sinx-2λ <0

⇒Sinx+2λ >0

⇒2λ>-sinx

⇒2λ>1

$$\Rightarrow \lambda > \frac{1}{2}$$

13. Question

.....

Mark the correct alternative in the following:

In the interval (1, 2), function f(x) = 2 |x - 1| + 3|x - 2| is

A. monotonically increasing

- B. monotonically decreasing
- C. not monotonic
- D. constant

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly decreading on (a,b) is that f'(x) < 0 for all $x \in (a,b)$

Given:-

f(x)=2(x-1)+3(2-x)

f(x)=-x+4

$$\frac{d(f(x))}{dx} = -1 = f'(x)$$

Therefore f'(x) < 0

Hence decreasing function

14. Question

Mark the correct alternative in the following:

Function $f(x) = x^3 - 27x + 5$ is monotonically increasing when

A. x < -3

B. |x| > 3

C. x ≤ -3

D. $|x| \ge 3$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = x^3 - 27x + 5$

$$\frac{d(f(x))}{dx} = 3x^2 - 27 = f'(x)$$

for increasing function f'(x) > 0

3x²- 27>0

⇒ (x+3)(x-3)>0

⇒|x|>3

15. Question

Mark the correct alternative in the following:

Function $f(x) = 2x^3 - 9x^2 + 12x + 29$ is monotonically decreasing when

A. x < 2 B. x > 2 C. x > 3

D. 1 < x < 2

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly decreasing on (a, b) is that f'(x) < 0 for all $x \in (a,b)$

Given:-

```
f(x) = 2x^3 - 9x^2 + 12x + 29
```

$$\frac{d(f(x))}{dx} = f'(x) = 6(x-1)(x-2)$$

for decreasing function f'(x) < 0

f'(x)<0

⇒6(x-1)(x-2)<0

⇒1<x<2

16. Question

Mark the correct alternative in the following:

If the function $f(x) = kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in every interval, then

- A. k < 3
- B. k ≤ 3
- C. k > 3
- D. k < 3

Answer

Formula:- (i) $ax^2+bx+c>0$ for all $x \Rightarrow a>0$ and $b^2-4ac<0$

(ii) $ax^2+bx+c<0$ for all $x \Rightarrow a<0$ and $b^2-4ac<0$

(iii) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = kx^3 - 9x^2 + 9x + 3$

 $\frac{d(f(x))}{dx} = f'(x) = 3kx^2 - 18x + 9$

for increasing function f'(x) > 0

f'(x)>0

⇒3kx²-18x+9>0

⇒kx²-6x+3>0

using formula (i)

36-12k<0

⇒k>3

17. Question

Mark the correct alternative in the following:

 $f(x) = 2x - \tan^{-1} x - \log \left\{ x + \sqrt{x^2 + 1} \right\}$ is monotonically increasing when

A. x > 0

B. x < 0

C. x ∈ R

D. x ∈ R − {0}

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x \in (a,b)$

CLICK HERE

>>>

🕀 www.studentbro.in

Given:-

$$f(x) = 2x - \tan^{-1}x - \log\{x + \sqrt{x^2 + 1}\}$$

$$\frac{df(x)}{dx} = 2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{x^2 + 1}} = f'(x)$$

For increasing function f'(x) > 0

$$\Rightarrow 2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{x^2 + 1}} > 0$$

x e R

18. Question

Mark the correct alternative in the following:

Function f(x) = |x| - |x - 1| is monotonically increasing when

A. x < 0

B. x > 1

C. x < 1

D. 0<x<1

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

For x<0

f(x) = -1

for 0 < x < 1

f(x)=2x-1

for x>1

f(x)=1

Hence f(x) will increasing in 0<x<1

19. Question

Mark the correct alternative in the following:

Every invertible function is

- A. monotonic function
- B. constant function

C. identity function

D. not necessarily monotonic function

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

If f(x) is strictly increasing function on interval [a, b], then f^1 exist and it is also a strictly increasing function

20. Question

Mark the correct alternative in the following:

In the interval (1, 2), function f(x) = 2|x - 1| + 3|x - 2| is

- A. increasing
- B. decreasing
- C. constant
- D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly decreasing on (a, b) is that f'(x) < 0 for all $x \in (a,b)$

Given:-

f(x)=2(x-1)+3(2-x)

 $\Rightarrow f(x) = -x + 4$

 $\frac{d(f(x))}{dx} = f'(x) = -1$

Therefore f'(x) < 0

Hence decreasing function

21. Question

Mark the correct alternative in the following:

If the function f(x) = cos|x| - 2ax + b increases along the entire number scale, then

A. a = b

B. $a = \frac{1}{2}b$ C. $a \le -\frac{1}{2}$

D.
$$a > -\frac{3}{2}$$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = \cos|x| - 2ax + b$

$$\frac{d(f(x))}{dx} = -\sin x - 2a = f'(x)$$

For increasing f'(x) > 0

⇒-sinx-2a>0

⇒2a<-sinx

 \Rightarrow 2a ≤ -1

 $\Rightarrow a \leq -\frac{1}{2}$

22. Question

Mark the correct alternative in the following:

The function
$$f(x) = \frac{x}{1+|x|}$$
 is

- A. strictly increasing
- B. strictly decreasing
- C. neither increasing nor decreasing
- D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

$$f(x) = \frac{x}{1+|x|}$$

For x>0

$$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{d}\mathrm{x}} = \frac{1}{1+\mathrm{x}^2} = \mathrm{f}'(\mathrm{x})$$

For x<0

$$\frac{\mathrm{d}(\mathrm{f}(\mathrm{x}))}{\mathrm{d}\mathrm{x}} = \frac{1}{1-\mathrm{x}^2} = \mathrm{f}'(\mathrm{x})$$

Both are increasing for f'(x) > 0

23. Question

Mark the correct alternative in the following:

The function
$$f(x) = \frac{\lambda \sin x + 2\cos x}{\sin x + \cos x}$$
 is increasing, if
A. $\lambda < 1$
B. $\lambda > 1$
C. $\lambda < 2$
D. $\lambda > 2$
Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = \frac{\lambda \sin x + 2\cos x}{\sin x + \cos x}$

For increasing function f'(x) < 0

$$\frac{d(f(x))}{dx} = f'(x) = \frac{\lambda - 2}{(\sin x + \cos x)^2} > 0$$

24. Question

Mark the correct alternative in the following:

Function $f(x) = a^x$ is increasing or R, if

A. a > 0

B. a < 0

C. a > 1

D. a > 0

Answer

Let $x_1 < x_2$ and both are real number

 $a^{x_1} < a^{x_2}$

 $\Rightarrow f(x_1) < f(x_2)$

⇒x₁<x₂∈

only possible on a>1

25. Question

Mark the correct alternative in the following:

Function $f(x) = \log_a x$ is increasing on R, if

A. 0 < a < 1

B. a > 1

C. a < 1

D. a > 0

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

CLICK HERE

>>

🕀 www.studentbro.in

 $f(x) = \log_a x$

$$\frac{d(f(x))}{dx} = \frac{1}{x \log_e a} = f'(x)$$

For increasing f'(x) > 0

$$\Rightarrow \frac{1}{\text{xlog}_e a} > 0$$

For log a>1

26. Question

Mark the correct alternative in the following:

Let $\phi(x) = f(x) + f(2a - x)$ and f''(x) > 0 for all $x \in [0, a]$. The, $\phi(x)$

A. increases on [0, a]

B. decreases on [0, a]

C. increases on [-a, 0]

D. decreases on [a, 2a]

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

 $\phi(x) = f(x) + f(2a - x)$

 $\Rightarrow \phi'(x) = f'(x) - f'(2a - x)$

 $\Rightarrow \varphi''(x) = f''(x) + f''(2a - x)$

checking the condition

 $\phi(x)$ is decreasing in [0,a]

27. Question

Mark the correct alternative in the following:

If the function $f(x) = x^2 - kx + 5$ is increasing on [2, 4], then

A. k ∈ (2, ∞)

B. k∈ (-∞, 2)

C. k ∈ (4, ∞)

D. k∈ (-∞, 4)

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = x^2 - kx + 5$

$$\frac{d(f(x))}{dx} = 2x - k = f'(x)$$

For increasing function f'(x) > o

2x-k>0

⇒K<2x

Putting x=2

K<4

⇒ k∈ (-∞, 4)

28. Question

Mark the correct alternative in the following:

The function $f(x) = -\frac{x}{2} + \sin x$ defined on $\left[-\frac{\pi}{3}, \frac{\pi}{3}\right]$ is

- A. increasing
- B. decreasing

C. constant

D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

$$f(x) = -\frac{x}{2} + \sin x$$
$$\frac{d(f(x))}{dx} = -\frac{1}{2} + \cos x = f'(x)$$

checking the value of x

$$\cos-\frac{1}{2}>0$$

hence increasing

29. Question

Mark the correct alternative in the following:

If the function $f(x) = x^3 - 9k x^2 + 27x + 30$ is increasing on R, then

A. $-1 \le k < 1$

B. k < -1 or k > 1

C. 0 < k < 1

D. -1 < k < 0

Answer

Formula:- (i) $ax^2+bx+c>0$ for all $x \Rightarrow a>0$ and $b^2-4ac<0$

(ii) $ax^2+bx+c<0$ for all $x \Rightarrow a<0$ and $b^2-4ac<0$

(iii) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = x^3 - 9k x^2 + 27x + 30$

 $\frac{d(f(x))}{dx} = f'(x) = 3x^2 - 18kx + 27$

for increasing function f'(x) > 0

3x²-18kx+27>0

⇒x²-6kx+9>0

Using formula (i)

36k²-36>0

⇒K²>1

Therefore -1 < k < 1

30. Question

Mark the correct alternative in the following:

The function $f(x) = x^9 + 3x^7 + 64$ is increasing on

A. R

B. (-∞, 0)

C. (0, ∞)

 $D.R_0$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x \in (a,b)$

Given:-

 $f(x) = x^9 + 3x^7 + 64$

$$\frac{d(f(x))}{dx} = 9x^8 + 21x^6 = f'(x)$$

For increasing f'(x)>o

 \Rightarrow 9x⁸+21x⁶>0

⇒ x∈R

